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Abstract. We have investigated the multifractal scaling of conductance jumps in a hierar- 
chical percolation lattice, resulting from cutting the current carrying bonds in the lattice. 
Due to the iterative nature of the model, exact renormalization group (RG) equations are 
obtained and used to extract the minimum conductance jump of the lattice. We find an 
asymptotically analytic expression for the minimum conductance jump, - exp[-e(log L)*]  

decreasing iasier ihan any power iaw. .We observed siow convergence io i'ne asympioiie 
behaviour due to the importance of the irrelevant terms in the RG equations at low 
generations of the lattice. Numerical calculations are performed in order to validate the 
analytic results and to calculate the f - a spectrum to  confirm left-sided multifractality as 
proposed by Lee and Stanley. 

1. introduction 

Recently, there has been an increased interest in the critical behaviour of random 
resistor networks. In particular, attention has been paid to  the breakdown of multifrac- 
tality in a range of negative moments [l]. Such anomalous multifractal measure was 
originally found in studies of diffusion limited aggregations (DLAS) by Schwarzer et a1 
[2]. At the bottom fjord in DLA structures, it is found that the minimum growth 
probability decays exponentially with size L; the free energy T ( q )  is singular at q = O  
and fails to be defined for all q < 0. These are anomalous measures that Lee and Stanley 
[3] originally discovered and Mandelbrot et a/ [4] named 'left-sided multifractality'. 
It is surprising to find exact renormalizability or self-similarity will result in failure of 
scaling of the partition function. 

Very recently, Nagatani [5] extended a hierarchical percolation model originally 
propose" oy ut: A,LaLrgcrLs Cl U1 L"J L" lllU"Cil L l l C  G I c i b L I I b a I  pruplrrra  U1 Ulci pGLrur'luUrl  

backbone of a random resistor network. The lattice contains rare clusters which take 
into account the faster decreasing minimum current fraction than a power law. The 
anomalous multifractal measure of the current distribution was studied analytically 
[5]. In this paper we adopt the b = 3 version of the hierarchical model (as shown in 
figure 1) and calculate numerically conductance jump (or resistance jump) distribution, 
resulting from cutting the current-carrying bonds of the lattice [7]. We obtain the 
multifractal spectrum for conductance jump. 

T h e  paper is organized as follows. In section 2 we describe the construction of the 
hierarchical lattice. In section 3 we use an exact renormalization group (RG) method 

>L.. A- A _^^_^^ I:̂  ^. _ I T L I . ^  - -A",  *L ̂ ^,^^ -,---- ^&:^^ -&-*Le-" ---, ...:-.. 
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b- I l d l  P- I 

Figure 1. The construction of the hierarchical lattice: ( a )  initiator, ( b )  regular cluster and 
( e )  rare cluster. The renormalization process: ( d )  regular cluster+ regular bond, and (e) 
rare cluster-rrare bond. 

to cbtain the minims= cnndectance jsmp 2nd derive 2% asy-p!o?icz!!y ~nz!ytic 
expression for it. We show that the result can be understood with Tellegen's theorem. 
In section 4 we describe a simple algorithm which allows us to find the complete set 
of values of conductance jump at any arbitrary generation. Section 5 deals with two 
important ways to characterize multifractality. The method of Lee and Stanley [3] will 
be used to study the finite-size multifractal spectrum in this anomalous case. In section 
6, the relationship between the current distribution and the conductance jump distribu- 
tion will be established through Tellegen's theorem. In the final section we present 
some concluding remarks. 

2. Hierarchical percolation model 

,ne nierarcnicai MLLICF is generated by iepiaciiig each bond by the ioiiesijondiiig 
generator iteratively. Starting from the initiator (figure l (a) ) ,  the solid bond is replaced 
by the regular cluster (figure 1(  b)), while the wavy bond is replaced by the rare cluster 
(figure l ( c ) )  to obtain the first generation. The lateral size is therefore increased by a 
factor of three. The second generation is obtained from the first generation by replacing 
each bond with each generator. The process is repeated ad injnitum to obtain the 
deterministic model. 

The fractal dimension of the hierarchical lattice can be determined as follows. Let 
C,, G. and F. denote, respectively, the number of bonds in the initiator, and the 
regular and rare clusters at the nth generation. By construction, each time when we 
go from the kth generation to the next generation we increase the lattice size by a 
factor of three while we increase Gk by a factor of six. That is, 

-. . . I ~ ~ ~ . - . . ~ I .  I I.._:.. . 

Gt,,  =sGi .. t>Q, - G c = l .  

We find G. = 6". From figure l (c ) ,  

F,,, = 5Fi f3Gk k 3 0, Fo = Go = 1. 
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We obtain F, =3(6") -2 (5")  and limn+- FJG. = 3 .  From figure l ( a ) ,  

k 3 1, C ,  = 6 .  
We obtain C.=6"+2(6"-'-5"-')  and lim.-mC,/Gn=$. One thus finds that db= 
lim.,,log,(C.+,/C.)=lim.,,log,(G.+,/G.)=log6/log 3 1  1.63. Wecanalsodeter- 
mine the cut bond dimension d,  = log 2/log 3 1 0.63 and the conductivity exponent 
t /  U = (log 11. -  log 4)/log 3 = 0.92 (see below). These values are close to the known 
percolation values: db = 1.62, d ,  = 0.75, t /  U = 0.97 [8]. 

Ck+,  =5Gk+ Fk 

3. Minimum conductance jump 

Due to the iterative nature of the lattice, one can find exact RG equations for the 
regular and the rare clusters. Figure l ( d )  shows the renormalization for the regular 
cluster. Let g and f be the conductances for the regular and rare bonds at the kth 
generation. We find the transformed values g' and f '  at the ( k +  1)th generation, 

g' = t g w g  + (tgO g)l = f i g  ( 1 )  
where g,Og, = g,g2/(g, + g 2 )  denotes the series combination of two conductances g, 
and g,. One thus finds that t /  U =log,(?) -0.92 in good agreement with the known 
result for percolation. Also, figure l ( e )  shows the renormalization of the rare cluster. 
We have 

f' = i f O [ g  + (tgof)]. 
Let x = f/g and x'= f ' /g ' ,  we find 

As n+m,  x'+O, we obtain x'=gx. With x,=I, we find 

x,, = (gy. (26) 
In figure 2, we show the conductance g for the regular cluster and the conductance 

f for the rare cluster as a function of L on a log-log plot. One can see that the rare 

I 
0 2 4 6 

Log, L 
Figure 2. Log-log plol of rare/regular conductance ratio. 
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conductancef decreases faster than the regular conductance g as the size of the lattice 
increases (both exhibit power law decay). In the same figure we also plot the ratio 
x = f / g  as a function of L. The figure confirms the asymptotic relation (26). However, 
the convergence to asymptotic behaviour is quite slow due to the irrelevant term which 
prevails in equation (2a) .  

In order to calculate the minimum conductance jump Agmi. which occurs upon 
cutting the rare bond inside the plaquette, let d = zg be the conductance of the defect 
rare bond, then 

P Y Tong and K W Yu 

d’=af@[g+ (fgOd)] 

or 

- g’ = - 4 (-+ 4 -) l f 2 z  . 
d’ 11 x 1+3z (3) 

Let us take the logarithm of equation (3), differentiate it with respect to z and let 
z=x+O, then 

i.e. 

Iterating the relation n times with the use of equation (26), one finds (%). =(:)“(!L)”(i!) z(n-1) ...(E)2(+) 
0 

Taking the logarithm, one arrives at 

log, (T)” Agmin = -[ 2n  log, 2f n’log, (33 + l o g 3 ( ~ )  0 ( 5 )  

Thus, the asymptotic behaviour of Agmj. is dominated by the n 2  term, or 

Agmi,= exp[-c(log L)21. (6) 

In figure 3, we present a plot for the logarithm of minimum conductance jump 
against several possible forms of F(k) ,  for 1 s k S 7, where k =log, L. First we want 
to check if follows a power law. The first form is F( k) = k We obtain a curve 
bending downwards towards large k, indicating that Agmin decreases faster than a 
power law. We then try the asymptotic form of equation ( 5 ) :  F ( k ) =  
2klog,2+kZlog,3.  The small-k region does not fit very well, indicating that the 
convergence to the asymptotic behaviour is indeed slow. Alternatively, we try the form 
F(k)  = O.l(k+S)’. Here an excellent fit is found. It is probably due to the presence of 
irrelevant terms that leads to power law corrections to the asymptotic behaviour. Thus, 
we find that the minimum conductance jump does not scale linearly with L but instead 
follows the asymptotic behaviour of equation (6). 

We may understand this behaviour with Tellegen’s theorem [9]. For a certain 
external current, by Tellegen’s theorem, 

AR=Aglg2=6R1~i , , /1~ 



Anomalous multifmctality of conductance jumps 

~ 

801 

Figure 3. Plot of logarithm of minimum conductance jump against lateral sire. Several 
forms of F(k), with k = lag, L is proposed (see text). 

where Io ,  AR are, respectively, the external current and resistance jump of the entire 
lattice, Imi, and SR being the current and resistance jump relevant to the innermost 
plaquette of the lattice. If we fix the external current I o -  1 and for 6 R = 1 ,  we find 
that Agmin - g21ki,. Using the minimum current 1,;" = exp[-(c/Z)(log L)2]  from [5], 
we recover the desired result (equation (6)). 

4. The complete set of conductance jump values 

In order to extract the multifractal spectrum of conductance jumps (Ag) and to confirm 
the above asymptotic results for Agmi., here we would like to find all possible values 
of Ag by cutting the current-carrying bonds in the lattice, one at a time. The evaluation 
of all possible Ag values is not straightforward and we give a brief description in the 
following. 

Due to the iterative nature of the lattice, we may accomplish this recursively. As 
shown in figure l (b) ,  the regular cluster does not contain any rare bonds in it and its 
renormalization can be performed independently. Starting with the first generation, 
each bond has a unit conductance. When a bond is to be removed from the cluster, 
there are three distinct places that it can be done: the series position with two-fold 
multiplicity, the short parallel position with only one case and the long parallel position 
with three-fold multiplicity. The conductance of the defect cluster (with one single 
bond being removed) can be evaluated for each of the three distinct cases. For 
convenience, we record the conductance value d; together with the multiplicity mi in 
a data file and X mi = G ,  = 6 gives a check of the correctness. 

For the second generation, we take the regular cluster but with each bond filled 
with conductance 8 , .  We take the defect bond from the first generation to form the 
defect cluster and evaluate the conductance for each of the three distinct cases. Again 
we obtain the multiplicity together with the conductance value; Z mi = G, gives a check 
of the correctness of the calculations. We have evaluated the conductance of the regular 
cluster up to the seventh generation. 
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For the rare cluster as shown in figure I(c) ,  both regular and rare bonds are 
contained. Starting with the first generation, it contains four rare bonds in series and 
one rare bond in parallel inside the plaquette; there are also three regular bonds, one 
at the short parallel position and the other two at the long parallel position. We record 
the conductance value as well as the multiplicity. Again X mi = F, = 8. For the second 
generation, we use the defect bonds for the regular cluster as well as for the rare 
clusters from the first generation and repeat similar calculations. We check X mi = F2 = 
58. We have calculated the conductance of the rare cluster up to the seventh generation. 

We then combine both the regular bonds and the rare bonds to form our hierarchical 
lattice. The conductance and the multiplicity associated with it are evaluated and 
recorded. This gives us a complete list of conductance jump values for our further 
analysis. With a close examination of the Ag data, we find that the maximum jumps 
occur on cutting the outmost series bonds, where Ag,,, is equal to the full conductance 
at that generation while Ag,,,;" occurs well inside the plaquette. The jump values spread 
out a wide range over several orders of magnitude. 

5. Multifractal spectrum of conductance jumps 

There are several ways to characterize multifractality. The most precise way is to study 
moments of the distribution of conductance jumps: 

M, =X m,(Ag,(L))" (7)  

where q is the moment order, i being the label of the AG values. For q 3 0  and 
sufficiently large L, these moments scale with size L as 

M, I L-?(q). (8) 

A multifractal distribution will be such that r ( q )  is not an affine function of q (i.e. 
absence of constant gap scaling). 

The large conductance jump of the regular cluster gives dominant contributions to 
the mament for q > 0. The fixed support of a,,,," = log, Ag,,, is as expected ford,= 0.63. 

negative moments of equation (7). Therefore, according to the exponential asymptotic 
behaviour of equation ( 6 ) ,  the negative moments cannot scale. 

In figure 4 ( a ) ,  we plot log, Mq against k =log, L for 0 s q s 5 and we find a linear 
relationship for k > 2. This confirms the rapid convergence to the scaling of equation 
(8), though not being characterized by a single gap exponent. T ( q )  is given by the 
negative of the slope of these plots. The slope - T ( q  = 0) for q = 0 is simply the fractal 
dimension of the hierarchical lattice; we find d,;. 1.63. In figure 4(b), we plot log, Mq 
against k = log, L for -5  s q s 0. In addition, figure 5 shows T( q )  as a function of q. 
We see that there is again remarkably rapid convergence as a function of L for q 3 0. 
On the other hand, for q <O, there appears to be no convergence at all and T ( q )  is 
therefore not defined for q < 0, in contrast to the well-defined T ( q )  for the q 3 0 case. 

Here we follow Lee and Stanley [3] to calculate the finite-size f(a) spectrum to 
exhibit the behaviour of left-sided multifractality. Let us define a parameter E associated 
with the conductance jump values: 

On !he o!her hand, cor q <o, the minimum conductance ; u p  hg,,, deminztes the 

~=-IogAg<(L)/ log L. (9) 
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Loll, L Log, L 
Figure 4. ( a )  Log-log plot of positive moments against L showing scaling behaviour 
(though non-constant gap). ( b )  Same as ( a ) ,  negative moments against L showing no 
scaling behaviour. 

I 
- 4  - 2  0 2 4 

9 
Figure 5. Finite-size ~ ( q )  behaviour, 1 < k < 6, showing no convergence to scaling far q < 0. 

In analogy to thermodynamics, we define a partition function 

M , ( L ) = z D ( e , L ) L - "  (10) 

where D(E, L )  is the density of states function, identical to the multiplicity associated 
with the conductance jump value. As we study the finite-size behaviour we define the 
free energy T ( q )  in the limit of infinite Size: 

T ( q )  = lim T ( q ,  L) (11) 
L-m 

where r(q,  L )  = -log M,(L)/log L. With the Legendre transformation of T ( q ,  L),  we 
obtain the finite size f (a) spectrum 

f (4. L) = q d q .  L) - d q ,  L) (12) 
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Figure 6. Finite-sire f (e) behaviour, I 4  k 4 7 showing left-sided multifraefality. 

where u(q, L ) = d ~ ( q ,  L ) / J q  is the variable conjugate to q. In figure 6, we plot the 

to small conductance jumps does not scale or converge. It exhibits a similar behaviour 
to the multifractal spectrum of DLA, namely that the right-hand side does not scale, 
or amax increases with L and hence the partition function does not scale as a power 
law and J(a) is a straight line with slope q at the large-a region. 

finitp-pim f(n) c n ~ r t m m  nf mnrlllrtnnra i n m n c  The rinht-hnnA &An ehn+ ~A.+~~ . .A-Ao ".--J ,-, "~----... -I -ll."-l.lll-c ,"...~". - 1 1 1  L.b...-LLY.LY 0."- L..YL '"L""p"..U" 

6. Relationship between current distribution and conductance jump distribution 

Here we should mention that the distribution of conductance jumps is related to that 
of the resistance jump as well as the current distribution [7]. Cutting bonds carrying 
large currents in the lattice will result in large conductance jumps or resistance jumps. 
As a consequence, we found that these spectra are related to each other. 

Let us first consider the spectra of A g  and AR. For small Ag, A g l g a  1, A R  - Agjg'. 
Suppose g-L-' ' ' ,PAgq-L-' '4'  andZAR4-L-P'4'.Thus,~(q)=~(q)-2qf/V,uR= 
a, - 2 1 1 ~  andfR(aR) =J,(a,). We find that the conductance jump and the resistance 
jump spectra are equal except for a shift of a value 2 11 Y = 1.84 of the ag axis. However, 
we find that the hierarchical lattice contains plenty of one-dimensional links, which 
would violate the approximation A R  - A g / g 2 ,  as the condition Ag << g no longer holds. 
~nerefore, the q > 0 part of the spectra is not simpiy reiated to a simpie shiit of the 
a-axis. Since cutting one-dimensional links makes A R  infinite, the fR ( u R )  spectrum 
will he truncated. 

We next consider the spectra of the resistance and the current distributions. As the 
condition 8R,<< RI  holds for large positive aR, we can use Tellegen's theorem [9] 
A R L =  8 R , ( I l / I L ) 2 ,  where I ,  and A R ,  are, respectively, the external current and 

relevant to the mesh size of the lattice. If we fix the external current I , ,  for certain 
S R , , P R , . c I : .  If Z I y - L - c ( q ) ,  then p ( q ) = o ( 2 q ) ,  uR(q)=2n1(2q) ,  andfR(aR(q) )=  
/1(a1(2q)). Since &(aR) is defined only for q <O, the fr(a,)  spectrum for q C 0 can 
be obtained by rescaling the aR axis by a factor of two. 

I 

ieaisiance j.ui-ilp of ihE eniire iaiiice, ;, ax, being the and resisiance jump 
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I. Conclusion 

In conclusion, we have investigated the multifractal scaling of conductance jumps in 
a hierarchical percolation lattice, resulting from cutting the current-carrying bonds in 
the lattice. Due to the iterative nature of the lattice, exact RG equations are obtained 
and used to extract the minimum conductance jump of the lattice. We find an asymptotic 
analytic expression for the minimum conductance jump, 

decreasing faster than any power law. We observed slow convergence to the asymptotic 
behaviour due to importance of the irrelevant terms in the RG equations at low 
generations of the lattice. Numerical calculations are performed in order to validate 
the analytic results and to calculate the f - a  spectrum to confirm the left-sided 
multifractality proposed by Lee, Stanley and coworkers [3]. 
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